новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Исследование рынка конструкционных полимеров в России
Исследование рынка полиэтиленовых и полипропиленовых листов в России
Исследование рынка ПВХ листов в России
Исследование рынка полиоксиметилена в России
Исследование рынка втулок и плит из полиамида в России
Исследование рынка полиэфирэфиркетона в России
Рынок листов и стержней из ПВДФ
Исследование рынка полиэтиленовых листов и плит в России
Исследование рынка полипропиленовых листов в России
Исследование рынка ПЭТ листов в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

Продукты оргсинтеза

ГИАЛУРОНОВАЯ КИСЛОТА: история применения


Гиалуроновая кислота лежит в основе многих препаратов, применяемых в косметологии для устранения морщин и увеличения объема губ


Гиалуроновая кислота представляет собой полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединённых поочерёдно β-1,4- и β-1,3-гликозидными связями.

Физико-химические свойства

Молекула гиалуроновой кислоты может содержать до 25 000 таких дисахаридных звеньев. Природная гиалуроновая кислота имеет молекулярную массу от 5 000 до 20 000 000 Да. Средняя молекулярная масса полимера, содержащегося в синовиальной жидкости у человека составляет 3 140 000 Да.

Молекула гиалуроновой кислоты является энергетически стабильной в частности благодаря стереохимии составляющих её дисахаридов. Объёмные заместители пиранозного кольца находятся в стерически выгодных положениях, в то время как меньшие по размеру атомы водорода занимают менее выгодные аксиальные позиции.

Гиалуроновая кислота является главным компонентом синовиальной жидкости, отвечающим за её вязкость. Наряду с лубрицином, гиалуроновая кислота — основной компонент биологической смазки.

Гиалуроновая кислота принимает значительное участие в пролиферации и миграции клеток, может быть вовлечена в процесс развития злокачественных опухолей. Продуцируется некоторыми бактериями (напр. Streptococcus). В теле человека весом 70 кг в среднем содержится около 15 грамм гиалуроновой кислоты, треть из которой преобразуется (расщепляется или синтезируется) каждый день.

Гиалуроновая кислота — важный компонент суставного хряща, в котором присутствует в виде оболочки каждой клетки (хондроцита). При связывании гиалуроновой кислоты с мономерами аггрекана в присутствии связующего белка, в хряще формируются крупные отрицательно заряженные агрегаты, поглощающие воду. Эти агрегаты отвечают за упругость хряща (устойчивость его к компрессии). Молекулярная масса (длина цепи) гиалуроновой кислоты в хряще уменьшается с возрастом организма, при этом общее её содержание увеличивается.

Также, гиалуроновая кислота входит в состав кожи, где участвует в регенерации ткани. При чрезмерном воздействии на кожу ультрафиолета, происходит её воспаление («солнечный ожог»), при этом в клетках дермы прекращается синтез гиалуроновой кислоты и увеличивается скорость её распада.

Применение гиалуроновой кислоты

Вследствие своего высокого содержания во внеклеточных матриксах, гиалуроновая кислота играет важную роль в гидродинамике тканей, процессах миграции и пролиферации клеток, а также участвует в ряде взаимодействий с поверхностными рецепторами клеток, в особенности со своим первичным рецептором CD44. Участие гиалуроновой кислоты в процессе развития опухолей может быть обусловлено именно её взаимодействием с CD44.

В то время как сама гиалуроновая кислота связывается с CD44, есть свидетельства того, что трансдукция воспалительного сигнала продуктов её деградации осуществляется через рецепторы макрофагов и дендритных клеток TLR2, TLR4 или через оба этих рецептора. Толл-подобные рецепторы (TLR) и гиалуроновая кислота принадлежат к системе врождённого иммунитета.

Гиалуроновая кислота синтезируется классом встроенных мембранных белков, называющихся гиалуронат-синтетазами. В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Эти ферменты удлинняют молекулу гиалуроновой кислоты, поочерёдно присоединяя к исходному полисахариду глюкуроновую кислоту и N-ацетилглюкозамин, при этом экструдируя («выдавливая») полимер через клеточную мембрану в межклеточное пространство.

Гиалуроновая кислота деградируется семейством ферментов, называемых гиалуронидазами. В организме человека существуют по меньшей мере семь типов гиалуронидазоподобных ферментов, некоторые из которых являются супрессорами опухолеобразования. Продукты разложения гиалуроновой кислоты (олигосахариды и крайне низкомолекулярные гиалуронаты) проявляют проангиогенные свойства. Кроме того, недавние исследования показали, что фрагменты гиалуроновой кислоты, в отличие от нативного высокомолеколекулярного полисахарида, способны индуцировать воспалительный ответ в макрофагах и дендритных клетках при повреждениях тканей и отторжении трансплантированной кожи.

Тот факт, что гиалуроновая кислота входит в состав многих тканей (кожа, хрящи, стекловидное тело), обусловливает её применение в лечении заболеваний, связанных с этими тканями (катаракта, остеоартрит и др.): эндопротезы синовиальной жидкости; хирургическая среда для офтальмологических операций; препараты для мягкого увеличения тканей и заполнения морщин (косметическая хирургия).

Гиалуроновая кислота связывает воду в межклеточных пространствах, повышая тем самым сопротивление тканей сжатию. Одна молекула гиалуроновой кислоты связывает и удерживает около себя до 500 молекул воды. Она участвует в транспорте и распределении воды в тканях. Гиалуроновая кислота определяет барьерную и защитную функции межклеточного пространства. Внутри суставов она действует как смазка суставных поверхностей, внутри глаза способствует нормализации внутриглазного давления.

Пластические операции с применением препаратов гиалуроновой кислоты

Гиалуроновая кислота используется в косметике, как составная часть средств ухода за кожей. Применение препаратов гиалуроновой кислоты  показано для коррекции носогубных складок, устранения морщин, увеличения объема губ. Гиалуруновая кислота, введенная под кожу или в мышцы, образует субстанцию, удерживающую жидкость и приводящую к разглаживанию кожи. Гиалуроновая кислота (например, всем известный препарат рестилайн)  вводится внутримышечно, подкожно или внутрикожно, она заполняет пустоты и впадины и начинает удерживать воду, что приводит к увеличению объема этого комплекса в месте инъекции. Кожа над этим участком выравнивается, разглаживается и тем самым происходит уменьшение морщин. Гелевая масса длительное время находится в кожных покровах и не разрушается. Эффект после контурной пластики губ держится  до года, после чего гель рассасывается и контурную пластику губ можно повторить.

Ультра-филлер на основе гиалуроновой кислоты

Одним из наиболее знаковых для косметологии разработок с использованием гиалуроновой кислоты является получение ультра-филера для разглаживания морщин.

Ультра-филлер на основе гиалуроновой кислоты — революционная разработка компании Allergan для эстетической медицины и пластической хирургии. Именно она 15 лет тому назад привезла в Россию ботокс, изменивший представления о возможностях косметологии у целого поколения врачей и их клиентов. Косметологи уверены: ультра-филлер — настоящий переворот в профессии.

Безопасность, комфорт и абсолютно предсказуемый долговременный результат — принципиальные отличия нового средства. За счет лидокаина ультра-филлер безболезненно вводится в кожу, позволяет мягко заполнять морщины изнутри и моделировать желаемые объемы. Революционная формула способна выдерживать различные температурные и химические воздействия без ущерба для здоровья клиента и потери эстетического эффекта. Стойкость ультра-филлера поражает: его действие продолжается от полугода до года!

С ультра-филлером омолаживающие процедуры стали безопасными и легкими как никогда раньше. Филлер нового поколения в сочетании с ботоксом, позволяет эффективно решать абсолютно любые эстетические проблемы. Быстро, безболезненно, предсказуемо и надолго. Революцию в мире эстетической медицины можно считать свершившейся.

История применения

Венгерский ученый Bandi Balazs эмигрировал из Венгрии в 1947 году. Приехав в Швецию, он начала работать в Стокгольме над проблемой биологической роли внеклеточных полисахаридов, причем особенно много внимания он уделял именно гиалуронату.

В те годы культуральная работа с клетками выглядела совсем по-другому. До появления антибиотиков все манипуляции выполнялись в строго стерильных условиях близких к условиям в операционной. Клетки растили на подвешенных сгустках фибрина. Фибробласты выделялись из измельченных куриных сердец, кусочки которых клались на фибриновые сгустки, а скорость роста культуры определялась по изменению площади колонии, которая указывала на скорость и расстояние миграции клеток.

Одним из первых открытий было выделение из ткани пуповины гиалуроната для того, чтобы затем вводить его в культуру фибробластов.

Гиалуронат выделялся из пуповинной крови и преципитировался в спирту. Затем его очищали от белков путем встряхивания экстракта в смеси хлороформа и изоамилового спирта (по методу Sewag). Была предпринята попытка разработать метод стерилизации вязкого раствора гиалуроната. Его нельзя было подвергать фильтрации, поэтому в конечном итоге ученые пришли к использованию автоклавирования.

В самом начале работы было сделано три очень важных наблюдения, которые заложили основу для дальнейших исследований.

Во-первых, удалось выделить гиалуронат из ткани пуповины, причем при разных ионных условиях был получен материал с различной степенью вязкости. Самая высокая вязкость была у раствора, приготовленного на дистиллированной воде. Ученые предположили, что вязкость раствора гиалуроната может колебаться в зависимости от значения рН и ионной силы растворителя. Сейчас это уже знает каждый, однако на тот момент этот феномен был описан Raymond Fuoss только для растворов синтетических полиэлектролитов. В журнале «Journal of Polymer Chemistry» была опубликована статья "The viscosity function of hyaluronic acid as a polyelectrolyte" ( Показатель взякости гиалуроновой кислоты как полиэлектролита ). С этого момент ученые вплотную занялись исследованиями физических и химических свойств гиалуроната.

Во-вторых, при попытке простерилизовать гиалуронат с помощью УФ-излучения он полностью утратил вязкость в растворе. В дальнейшем было показано, что при воздействии потока электронов гиалуронат также полностью подвергается деградации. Сейчас уже можно сказать, что то наблюдение было одним из первых описаний свободнорадикального расщепления гиалуроната.

В-третьих, исследовались и биологические эффекты гиалуроната и ряда сульфатированных полисахаридов – гепарина, гепарансульфата ( который в те годы назывался «гепарин-односерной кислотой» ) и синтетически сульфатированного гиалуроната. Ученые сравнили их влияние на рост культуры клеток, антикоагулянтную активность и антигиалуронидазную активность. Главной задачей было выяснить действительно ли гепарин представляет собой сульфатированный гиалуронат, как это утверждалось в работах Asboe-Hansen, однако был сделан вывод, что это утверждение было ошибочно.

Гиалуронат, в отличие от сульфатированных полисахаридов, ускорял рост клеток и это, пожалуй, было одно из первых описаний взаимодействия гиалуроната с живыми клетками – сегодня мы знаем, что это взаимодействие опосредовано клеточным рецептором. Интересно, что это было также одно из первых исследований, посвященных изучению биологической активности гепарансульфата.

Все вышесказанные исследования были выполнены в короткий промежуток времени, начиная с сентября 1949 по декабрь 1950, то есть заняли лишь немногим больше 1 года

1 | 2 | 3 | 4
Версия для печати | Отправить |  Сделать стартовой |  Добавить в избранное
Статьи по теме

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Материалы раздела

ФРУКТОЗА ВРЕДНЕЕ САХАРА
ЗАЩИТА СОЕВЫХ ПОСЕВОВ
ВОЗДЕЙСТВИЕ КОФЕИНА
ПОЛИМОЧЕВИННЫЕ ПОКРЫТИЯ
ПОКРЫТИЯ ДЛЯ СТАЛИ ПЯТОГО ПОКОЛЕНИЯ COLORCOAT PRISMA
БУДУЩЕЕ ТРАНСГЕННЫХ ПРОДУКТОВ В РОССИИ
КАК ЕДА МЕНЯЕТ ЧЕЛОВЕКА
ПЕРВЫЕ ДОКЛИНИЧЕСКИЕ ИССЛЕДОВАНИЯ «КАРДИОНОВА»
БОТОКС ПОМОГАЕТ от МИГРЕНИ
МЕМБРАННЫЕ ЭЛЕМЕНТЫ LEWABRANE
24 НОВЫХ АЛЛЕРГЕНА "АЛКОР БИО"
МЕТОД РАННЕЙ ДИАГНОСТИКИ РАКА
ПРОЕКТ TOPYIELD
ПЕРВЫЙ РОССИЙСКИЙ ПРЕПАРАТ ДЛЯ ЛЕЧЕНИЯ ИШЕМИИ
ДОСТИЖЕНИЯ BASF для ИНДУСТРИИ КРАСОТЫ
СИНТЕЗ НОВЫХ БЕЛКОВ
KEEP 32 СДЕЛАЕТ ЗУБЫ «НЕУЯЗВИМЫМИ ДЛЯ КАРИЕСА»
ВИТАМИНЫ "КАВИКОРМ" для ЖИВОТНЫХ
ВРЕДНО ЛИ ПАЛЬМОВОЕ МАСЛО?
СВОЙСТВА И ПРИМЕНЕНИЕ ЛИЗИНА
ПИЩЕВЫЕ ВОЛОКНА в ПРОИЗВОДСТВЕ ЗАМОРОЖЕННЫХ ПРОДУКТОВ
ОТБЕЛИВАТЕЛИ «ПИГМЕНТА»
МЕБЕЛЬНЫЙ ЛАК НА ОСНОВЕ РАСТИТЕЛЬНОГО СЫРЬЯ
«МОСВОДОКАНАЛ»: гипохлорит натрия вместо хлора
НОВЫЕ ПРОЕКТЫ: ДИОКСИД КРЕМНИЯ ИЗ РИСОВОЙ ШЕЛУХИ
ФОЛИЕВАЯ КИСЛОТА - новое измерение в контрацепции
«БИОКАД» об ИСПЫТАНИЯХ «АЛЬГЕРОНА»
ВОЗМОЖНОСТИ ТОПИНАМБУРА
ПИЩЕВЫЕ КРАСИТЕЛИ ДЛЯ ПАСХАЛЬНЫХ ЯИЦ
НОВИНКИ BASF на «ИНТЕРПЛАСТИКА 2012»
ВДЫХАЕМЫЕ ФОРМЫ ИНСУЛИНА
БЕЗВРЕДЕН ЛИ ВИТАМИН Е?
КОРМОВЫЕ ФЕРМЕНТЫ DIREVO
ФРУКТОЗА - САМЫЙ ВРЕДНЫЙ САХАР
НОВЫЕ АМИНОКИСЛОТЫ, НОВЫЕ БЕЛКИ
БИОТЕСТЫ MAGNISENSE в РОССИИ
ПРЕМИКСЫ YOUPIG ДЛЯ СВИНОВОДСТВА
ОТЕЧЕСТВЕННАЯ «ЛЮКСОВАЯ» КОСМЕТИКА
КРАХМАЛЬНЫЙ КЛЕЙ: адгезия и когезия
«БИОКАД» о РАЗРАБОТКЕ БЕВАЦИЗУМАБА
ОТЕЧЕСТВЕННЫЕ ФАРМИННОВАЦИИ
НОВЫЕ ТЕХНОЛОГИИ ПОЧВООБРАБОТКИ
АНТИМИКРОБНОЕ ВОЗДЕЙСТВИЕ НАФТАЛАНОВОЙ НЕФТИ
ПРЕМИКСЫ NATUPHOS
ПРОБИОТИКИ + ПРЕБИОТИКИ

>>Все статьи

Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved