новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

Продукты оргсинтеза

ГИАЛУРОНОВАЯ КИСЛОТА: история применения

РОЛЬ ГИАЛУРОНАТА В КЛЕТКЕ

Вплоть до открытия гиаладгеринов считалось, что гиалуронат оказывает влияние на клетки только за счет физических взаимодействий. Данные о том, что гиалуронат может играть роль в биологических процессах были единичными и, в большинстве своем, были построены на отсутствии или наличии гиалуроната при разных биологических процессах. Многие из спекуляций того времени были построены на методах неспецифического гистологического окрашивания.

В начале 1970-х в Бостоне было выполнено очень интересное исследование. Bryan Toole и Jerome Gross показали, что во время регенерации конечности у головастиков гиалуронат синтезируется в самом начале, а затем его количество уменьшается под действием гиалуронидазы, при этом происходит замещение гиалуроната хондроитинсульфатом. Таким же образом развиваются события и при формировании роговицы у цыпленка. Toole указал, что накопление гиалуроната совпадает с периодами миграции клеток в ткани. Как уже было сказано выше, Toole также провел первые исследования мембранно-связанных гиаладгеринов, а с открытием рецепторов гиалуроната у нас есть все больше оснований полагать, что гиалуронат играет роль регуляции клеточной активности, например, при движении клеток. В последние 10 лет можно наблюдать всплеск числа публикаций, посвященных роли гиалуроната в миграции клеток, митозе, воспалении, опухолевом росте, ангиогенезе, оплодотворении и т.д.

БИОСИНТЕЗ ГИАЛУРОНАТА

Исследования биосинтеза гиалуроната можно условно разделить на 3 фазы. Первым автором и наиболее выдающимся ученым в первую фазу был Albert Dorfman. Он и его коллеги еще в начале 50-х описали источник моносахаридов, которые встраивались в гиалуроновые цепочки стрептококков. В 1955 году Glaser и Brown впервые показали возможность синтеза гиалуроната отдельной синтетической системой вне клетки. Они использовали фермент, выделенный из клеток куриной саркомы Rous и вводили в состав гиалуроновых олигосахаридов меченую изотопом 14С УТФ-глюкуроновую кислоту. Группа Dorfman также выделила молекулы-предшественники УТФ-глюкуроновой кислоты и УТФ-N-ацетилглюкозамина из экстракта стрептококков, а также синтезировала гиалуронат, пользуясь для этого ферментативной фракцией, выделенной из стрептококков.

Во второй фазе стало понятно, что гиалуронат должен синтезироваться по пути, отличному от гликозаминогликанов. Синтез гиалуроната, в отличие от сульфатированных полисахаридов, не требует активного синтеза белка. Ответственная за это синтаза расположена в мембране протопласта бактерий и плазматической мембране эукариотических клеток, но не в аппарате Гольджи. Синтетический аппарат, предположительно расположен на внутренней стороне мембраны, так как он оказался нечувствительным к воздействию внеклеточных протеаз. Кроме того, гиалуроновая цепочка пронизывает мембрану, так как воздействие на клетки гиалуронидазы усиливало продукцию гиалуроната. В 80-ые годы были предприняты несколько безуспешных попыток выделить синтазу из эукариотических клеток.

В начале 90-ых было показано, что гиалуронат-синтаза является фактором вирулентности стрептококков группы А. Взяв эти данные за основу, две группы авторов смогли определить ген и локус, отвечающий за синтез гиалуроновой капсулы. Вскоре удалось и клонировать ген этой синтазы и полностью его просеквенировать. Гомологичные белки, выделенные в последние годы у всех позвоночных, дали ценную информацию о ее строении. Важной областью исследования может стать изучение механизмов регуляции активности этой синтазы.

МЕТАБОЛИЗМ И ДЕГРАДАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в крови, а также его переноса от тканей по лимфатической системе стало основой для проведения совместного исследования, проводившегося доктором Robert Fraser в Мельбурне и лабораторией в г. Уппсала. Следовые количества полисахарида, меченого тритием по ацетильной группе были обнаружены в крови после введения его кроликам и людям, а метка соединения исчезала с периодом полувыведения равным нескольким минутам. Вскоре стало понятно, что большая часть радиации была накоплена печенью, где полимер быстро подвергался расщеплению. Меченая тритием вода обнаруживалась в крови через 20 минут. Авторадиограммы показали, что накопление радиации происходило также в селезенке, лимфоузлах и костном мозге. Методом фракционирования клеток было также показано, что в печени накопление происходило в основном в эндотелии синусов, что было позднее подтверждено при исследовании in vitro и при радиографии in situ. На этих клетках имеется рецептор для эндоцитоза гиалуроната, который принципиально отличается от прочих гиалуронат-связывающих белков. Далее полисахарид расщепляется в лизосомах. Исследования гиалуроната проводились и в других тканях, и теперь существует цельная картина метаболизма этого полисахарида.

В последнее время еще один аспект катаболизма гиалуроната стал объектом большого числа исследований. Из работ Gunther Kreil (Австрия) и Robert Stern и его коллег (Сан-Франциско) стали известны структуры и свойства различных гиалуронидаз. Эти данные стали основой для исследований, прояснивших биологическую роль этих ферментов.

ГИАЛУРОНАТ ПРИ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЯХ

С самого начала интерес ученых был прикован к свойствам гиалуроната, содержащегося в суставной жидкости, особенно к изменению его уровня при заболеваниях суставов. Было также показано, что гиперпродукция гиалуроната наблюдается при целом ряде заболеваний, например, при злокачественных опухолях – мезотелиомах, однако в то время еще не существовало достаточно точных и чувствительных методов обнаружения гиалуроната. Такая ситуация имела место вплоть до 1980 годов, когда были разработаны новые аналитические методики, что вновь привлекло интерес ученых к колебаниям содержания гиалуроната при разных заболеваниях. Были определены содержание гиалуроната в крови в норме и при патологии, особенно при циррозе печени. При ревматоидном артрите содержание гиалуроната в крови возрастало при физических нагрузках, особенно по утрам, что давало объяснение симптому «утренней скованности» в суставах. При различных воспалительных заболеваниях уровень гиалуроната в крови повышался как местно, так и системно. Органные дисфункции также могли быть объяснены накоплением гиалуроната, что вызывало интерстициальные отеки тканей.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

Основной прорыв в медицинском использовании гиалуроната целиком является заслугой д-ра Balazs. Он разработал основные положения и идеи, первым синтезировал форму гиалуроната, которую хорошо переносили больные, продвигал идею промышленного производства гиалуроната и популяризовал идею применения полисахаридов в качестве лекарственных средств.

В 50-ые годы Balazs сконцентрировал усилия на изучении состава стекловидного тела и начал проводить опыты с заменителями для возможного протезирования при лечении отслойки сетчатки. Одним из наиболее серьезных препятствий на пути применения гиалуроновых протезов стала высокая сложность выделения чистого гиалуроната, свободного от всех примесей, вызывающих воспалительную реакцию.

Balazs разрешил эту проблему и получившийся в итоге препарат получил название НВФ-NaГУ (невоспалительная фракция гиалуроната натрия). В 1970 гиалуронат был впервые введен в суставы беговым лошадям, страдавшим от артритов, причем был получен клинический выраженный ответ на лечение с уменьшением симптомов заболевания. Двумя годами позже Balazs смог убедить руководство компании Pharmacia AB в г. Уппсала начать производство гиалуроната для использования в клинической и ветеринарной практике. Miller и Stegman по совету д-ра Balazs начали использовать гиалуронат в составе имплантируемых внутриглазных линз и гиалуронат быстро стал одним из самых употребительных компонентов в хирургической офтальмологии, получив торговое название Healon®. С того момента были предложены и испытаны многие другие варианты использования гиалуроната. Его производные (например, поперечно структурированные гиалуронаты) также были испытаны для использования в клинике. Особенно хочется отметить, что еще в 1951 году Balazs уже сообщал о биологической активности самых первых из полученных тогда производных гиалуроната.

Рост интереса связан, во многом, с успешными работами Endre Balazs, который сделал очень много в области исследования свойств гиалуроната, получил самые первые данные о нем, указал на возможность клинического применения гиалуроната и является вдохновителем, подвигающим научное сообщество на новые исследования.

www.newchemistry.ru

1 | 2 | 3 | 4
Версия для печати | Отправить |  Сделать стартовой |  Добавить в избранное
Статьи по теме

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Материалы раздела

ФРУКТОЗА ВРЕДНЕЕ САХАРА
ЗАЩИТА СОЕВЫХ ПОСЕВОВ
ВОЗДЕЙСТВИЕ КОФЕИНА
ПОЛИМОЧЕВИННЫЕ ПОКРЫТИЯ
ПОКРЫТИЯ ДЛЯ СТАЛИ ПЯТОГО ПОКОЛЕНИЯ COLORCOAT PRISMA
БУДУЩЕЕ ТРАНСГЕННЫХ ПРОДУКТОВ В РОССИИ
КАК ЕДА МЕНЯЕТ ЧЕЛОВЕКА
ПЕРВЫЕ ДОКЛИНИЧЕСКИЕ ИССЛЕДОВАНИЯ «КАРДИОНОВА»
БОТОКС ПОМОГАЕТ от МИГРЕНИ
МЕМБРАННЫЕ ЭЛЕМЕНТЫ LEWABRANE
24 НОВЫХ АЛЛЕРГЕНА "АЛКОР БИО"
МЕТОД РАННЕЙ ДИАГНОСТИКИ РАКА
ПРОЕКТ TOPYIELD
ПЕРВЫЙ РОССИЙСКИЙ ПРЕПАРАТ ДЛЯ ЛЕЧЕНИЯ ИШЕМИИ
ДОСТИЖЕНИЯ BASF для ИНДУСТРИИ КРАСОТЫ
СИНТЕЗ НОВЫХ БЕЛКОВ
KEEP 32 СДЕЛАЕТ ЗУБЫ «НЕУЯЗВИМЫМИ ДЛЯ КАРИЕСА»
ВИТАМИНЫ "КАВИКОРМ" для ЖИВОТНЫХ
ВРЕДНО ЛИ ПАЛЬМОВОЕ МАСЛО?
СВОЙСТВА И ПРИМЕНЕНИЕ ЛИЗИНА
ПИЩЕВЫЕ ВОЛОКНА в ПРОИЗВОДСТВЕ ЗАМОРОЖЕННЫХ ПРОДУКТОВ
ОТБЕЛИВАТЕЛИ «ПИГМЕНТА»
МЕБЕЛЬНЫЙ ЛАК НА ОСНОВЕ РАСТИТЕЛЬНОГО СЫРЬЯ
«МОСВОДОКАНАЛ»: гипохлорит натрия вместо хлора
НОВЫЕ ПРОЕКТЫ: ДИОКСИД КРЕМНИЯ ИЗ РИСОВОЙ ШЕЛУХИ
ФОЛИЕВАЯ КИСЛОТА - новое измерение в контрацепции
«БИОКАД» об ИСПЫТАНИЯХ «АЛЬГЕРОНА»
ВОЗМОЖНОСТИ ТОПИНАМБУРА
ПИЩЕВЫЕ КРАСИТЕЛИ ДЛЯ ПАСХАЛЬНЫХ ЯИЦ
НОВИНКИ BASF на «ИНТЕРПЛАСТИКА 2012»
ВДЫХАЕМЫЕ ФОРМЫ ИНСУЛИНА
БЕЗВРЕДЕН ЛИ ВИТАМИН Е?
КОРМОВЫЕ ФЕРМЕНТЫ DIREVO
ФРУКТОЗА - САМЫЙ ВРЕДНЫЙ САХАР
НОВЫЕ АМИНОКИСЛОТЫ, НОВЫЕ БЕЛКИ
БИОТЕСТЫ MAGNISENSE в РОССИИ
ПРЕМИКСЫ YOUPIG ДЛЯ СВИНОВОДСТВА
ОТЕЧЕСТВЕННАЯ «ЛЮКСОВАЯ» КОСМЕТИКА
КРАХМАЛЬНЫЙ КЛЕЙ: адгезия и когезия
«БИОКАД» о РАЗРАБОТКЕ БЕВАЦИЗУМАБА
ОТЕЧЕСТВЕННЫЕ ФАРМИННОВАЦИИ
НОВЫЕ ТЕХНОЛОГИИ ПОЧВООБРАБОТКИ
АНТИМИКРОБНОЕ ВОЗДЕЙСТВИЕ НАФТАЛАНОВОЙ НЕФТИ
ПРЕМИКСЫ NATUPHOS
ПРОБИОТИКИ + ПРЕБИОТИКИ

>>Все статьи

Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved