Помимо высокой скорости полимеризации также было возможно осуществление регулирования стереобаланса в процессе полимеризации рацемических смесей S,S- и R,R-лактида или R,S-лактида, что позволяет производить PLA с контролируемой симметричностью молекулярной структуры. Поскольку симметричность молекулярной структуры влияет, например, на ее упорядоченность, температуру плавления и скорость разрушения, эти системы оказались довольно полезными для контроля свойств PLA. Например, хиральные комплексы Al (salen) (Рис. 2) продемонстрировали замечательную избирательность для полимеризации рацемического лактида, при этом константа скорости для добавления R,R энантиомер в 20 раз превышает аналогичный показатель для S,S энантиомера. В результате эти инициаторы создают «стереоблок»-PLA из рацемического лактида. К тому же, синдиотактический PLA можно производить при помощи этих же систем и R,S-лактида. Были изучены другие избирательные катализаторы, и это богатое поле для исследований. Рисунок 2. Типичные структуры инициаторов/катализаторов для регулирования стереобаланса в процессе полимеризации лактида. К недавним исследованиям в этой области относится разделение катализатора и инициатора в процессе полимеризации «активированного мономера». В этих системах катализатор координирует и активирует циклически сложный эфир, и ключевой стадией роста является агрессивное воздействие внешнего нуклеофила (обычно это спирт). В последних демонстрациях этого типа полимеризации был разработан ряд органокатализаторов, обеспечивающих очень высокий уровень контроля за процессом полимеризации, высокую скорость процесса, а также внедрение различных конечных групп. Чаще всего при помощи этих каталитических методов производятся атактические или изотактические материалы для PLA. Атактические варианты полностью аморфны, их температура стеклования примерно равна 55°C. Изотактический PLA обладает аналогичной температурой стеклования, однако обычно является полукристаллическим с точкой плавления около 170°C. Термические свойства этих различных материалов различны, однако близость температуры стеклования к комнатной температуре и/или рабочим температурам делает PLA непригодным для применения в областях, в которых требуется структурная целостность при более высоких температурах. Поэтому было предпринято несколько попыток увеличить температура стеклования у PLA или материалов на основе лактида. Это является темой статьи группы Бейкера. Стандартная стратегия включает в себя синтез и полимеризацию циклически сложных эфиров, связанных с лактидом. Эти мономеры часто несут в себе громоздкие или жесткие боковые цепи, которые в принципе могут ограничить движение сегментов и, таким образом, повысить температуру стеклования. В этой области проводилось немного исследований, однако недавно активность повысилась благодаря важности и пониманию того, что незначительное повышение температуры стеклования материалов на основе полилактида может значительно расширить сферу его применения. Также исследовалась возможность понижения температуры стеклования PLA, однако это обычно делалось с целью попытаться повысить жесткость PLA. В статье группы Андерсона рассматривается данная область исследований и другие стратегии усиления жесткости PLA. Добавки, повышающие ударную вязкость PLA, в целом предназначаются для усиления ударной вязкости материала или прочности на разрыв. Тем не менее, повышение показателей любого из этих параметров происходило за счет ослабления модуля и/или прочности на растяжение. На самом деле, проведение сравнений между исследованиями может оказаться проблематичным, так как для определенных стратегий повышения прочности часто не предоставляется полный профиль свойств. В добавление к снижению уровня стеклования через пластификацию изучались многие методики укрепления каучука. В рамках последней методики с PLA смешивались различные материалы. Помимо двойных смесей изучалось несколько тройных смесей, включающих в себя подходящую добавку для повышения совместимости компонентов. Одной из главных проблем в любой методике смешивания с PLA является первоначальная и экологическая совместимость партнера по смеси. С PLA смешивались многие материалы, однако лишь некоторые из них созданы на основе возобновляемых материалов и/или разрушаются в естественных условиях. Недавние исследования в области укрепления PLA были сосредоточены на внедрении возобновляемых материалов в композиты, содержащие PLA. Во многих случаях добавки, повышающие ударную вязкость, представляют собой полиэфиры. Поэтому необходимо внимательно контролировать условия смешивания, чтобы должным образом управлять процессами разрушения и переэтерификации. Это подчеркивает одну из главных проблем утилизации возобновляемых полимеров: в сравнении с материалами нефтехимической промышленности они в целом более чувствительны к температуре, химическому воздействию, гидролизу и окислению.
|