Мы стремимся к созданию поликристаллического мелкозернистого строения материала. Одним из путей этого может служить увеличение дисперсности зерен. Дробление исходного материала сопровождается снижением числа опасных дефектов, что приводит к возрастанию прочности. Отсюда открывается прямая дорога к получению и использованию наночастиц. Однако необходимо помнить, что вышесказанное должно быть подкреплено межчастичным взаимодействием на уровне химических связей. Процессы гидратации минералов цементного клинкера и возникновение продуктов гидратации - это есть не что иное, как построение на наноуровне новых веществ. Этими процессами мы можем и должны управлять. Это своеобразная «сборка» наночастиц в наносистемы и нанообъекты. Твердение портландцемента происходит за счет химического взаимодействия (гидратация и гидролиз) минералов клинкера с водой. Это общепризнанный факт. Результатом этих процессов является образование сложных по составу кристаллогидратов. Они со временем сращиваются и образуют пространственную решетку, которая обеспечивает прочность цементного камня. С точки зрения нанотехнологии представляется уместным рассмотреть вопрос образования продуктов гидратации основных минералов клинкера и отметить пути формирования нужных наносистем. Продукты взаимодействия трехкальциевого силиката впервые минуты представляют собой силикагель, высокоосновный гидросиликат - двуводный трехкальциевый силикат (С35Н2). Эти неустойчивые (мета-стабильные) новообразования постепенно превращаются в гидросиликаты сложного состава типа n CaO xSi02 уН2О. При обычных условиях они образуются преимущественно в виде ЗСаО 2SiO2 ЗН2О. Если же в системе щелочность среды изменяется, то гидросиликаты тут же реагируют на это и изменяют свой состав. Это обстоятельство является важным фактором регулирования вида продуктов гидратации. При концентрации гидрооксида кальция в жидкой среде (в расчете на СаО) от 0,05 до 1,1 г/л возникают новообразования типа (0,8...1,5) CaOSi02 (1...2,5) H2O. При этом основность этих продуктов будет тем выше, чем больше концентрация СаО в жидкой фазе. Гидратация двухкальциевого силиката идет аналогично вышеописанной, но медленнее. Результатом взаимодействия трехкальциевого алюмината с водой в зависимости от температуры и щелочности среды, влажности, длительности твердения и присутствия таких продуктов, как СаС03; CaCL; SiO2; CaS042H7O и некоторых других могут быть такие новообразования: ЗСаО AI2O3 (10-12) Н2О; 4СаО AkO3 1 ЗН,0; ЗСаО AI203 xSi02 (6-12) Н2О; 3СаО АI2О3-Са СI2 I ОН2О; ЗСаО AI2O3 CaCI2 1OH2O; 3CaO AI2O3 (30-31) Н2О; ЗСаО AI203 CaS04 I 2Н20; ЗСаОАI203-6Н20. Возникающие кристаллы новообразований могут иметь разную форму: пластинчатую, кубическую, гексагональную, игольчатую, сферическую. Характерно, что каждой форме присущи свои отличные от других свойства. Четырехкальциевый алюмоферрит при гидратации обычно дает ЗСаО АI2О3 6Н2О и СаО Fe2O ЗН20. В условиях повышенной щелочности жидкой фазы возможно образование 4СаО Fe2O3 I ЗН2О. Характерно, что гидроферриты как и гидроалюминаты способны образовывать комплексные соединения с CaSO4 2H2O; CaCI2; SiO2 и др., а значит и иметь разные свойства.
|