НА ГЛАВНУЮ 

КОТАКТЫ  

АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    
СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English

СЛОВАРЬ ТЕРМИНОВ

ПОИСК В РАЗДЕЛЕ    

Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ПАССИВНОСТЬ МЕТАЛЛОВ, повышенная стойкость металлов против коррозии в условиях, когда термодинамически металл реакционноспособен. Обусловлена образованием защитных поверхностных соединений при взаимодействии металла с компонентами среды в процессе анодного растворения. Переход металла в пассивное состояние наз. пассивацией, образующийся на его пов-сти слой-пассивирующим слоем. Пассивирующие слои тормозят, помимо окисления металлов, также протекание на их пов-сти электродных окислит.-восстановит. р-ций. По составу пассивирующих слоев различают оксидную П. м. и солевую (возможны слои более сложного состава). Термин "П. м." нередко используют для описания торможения поверхностными слоями нек-рых др. гетерог. р-ций: газовой коррозии (оксидные пленки и окалины), электрокристаллизации (адсорбц. пленки ПАВ).

П.м. была открыта М.В.Ломоносовым (1743) на примере устойчивости железа к растворению в концентрир. HNO3; более подробно эта система была исследована M. Фарадеем (1836), к-рый пришел к выводу об образовании на границе металл-к-та особого защитного слоя. Впоследствии выяснилось, что пассивность характерна для переходных и ряда др. металлов в первую очередь в водных и многих водно-орг. р-рах электролитов, где пассивирующим компонентом является вода.

3526-26.jpg

Основные закономерности П.м. установлены посредством изучения зависимости от электродного потенциала E стационарной скорости iст растворения металла M (см. рис.). При изменении E путем анодной поляризации или введения в р-р окислителя (молекул O2, ионов Fe3+, Ce4+ и др.) наблюдается характерный для активного металла экспо-ненц. рост iст с повышением E (участок AB). Затем рост iст замедляется и выше нек-рого потенциала Епас скорость растворения металла резко снижается (участок CD)и принимает практически постоянное (обычно низкое) значение в интервале потенциалов Епп - Епрп(участок DE-пассивная область), после чего рост скорости растворения возобновляется (участок EF). Значение Eпас обычно наз. потенциалом пассивации, соответствующую ему скорость растворения металла iкр-критич. током пассивации , Еппи iпп - потенциалом и током полной пассивации (полной пассивности). Потенциал Eпрп, при к-ром растворение вновь ускоряется, наз. потенциалом перепассивации (EF- область перепассивации).

Описанные характерные потенциалы и токи (пассивацион-ные характеристики) определяются составами и св-вами металла и среды (см. табл.). В общем случае эти характеристики улучшаются с повышением сродства металла к кислороду, при гомогенизации структуры металлич. материала, в частности аморфизацией или созданием микрокристаллич. структуры.

Значения Enac, iкр и Еппобычно снижаются при уменьшении т-ры среды, повышении рН (от кислых до нейтральных или слабощелочных р-ров), увеличении концентрации воды 3526-27.jpg в водно-орг. р-рах электролитов. При 3526-28.jpg ниже нек-рого критич. значения (3526-29.jpg0,01-10%) оксидная П.м.

ХАРАКТЕРИСТИКИ ПАССИВНОСТИ НЕК-РЫХ МЕТАЛЛОВ В ДЕАРИРОВАННЫХ 0,5-1 M P-PAX H2SO4 при 20 25 oС (потенциалы Eпас, Епп и Епрп в В по отношению к нормальному водородному электроду, токи iкр и iпп- в А/м2) становится невозможной: вместо снижения iкр регистрируется выход на предельный анодный ток. Подобным же образом кривая E-iст трансформируется при увеличении концентрации HCl в водном р-ре, т-ры и т.п. Возможен самопроизвольный (без поляризации от внеш. источника) переход металла в пассивное состояние-самопассива-ц и я. Она происходит, если скорость катодного восстановления окислителя iок при Епас удовлетворяет соотношению: iок > iкр. При этом потенциал коррозии Eкор устанавливается в пассивной области выше Еппи отсутствует максимум на зависимости анодного тока от потенциала (см. Коррозия металлов).

Металл

Eпас

iкр

Епп

iпп

Eпрп

Железо

3526-30.jpg 0,5

2·103

3526-31.jpg 0,7

7·10-2

1,65

Никель

0,15

1·102

0,4

2,5·10-2

1,1

Хром

-0,35

1,7·102

-0,05

5·10-4

1,1

Молибден


-

<-0,3

1·10-4

0,1

Титан

-0,25

0,6

0,0

1·10-2

-

Нержавеющая сталь 18Cr -8Ni

-0,05

1,0

0,1

1·10-3

1,1

Аморфный сплав Fe70Cr10P13C7

0,0

1,0

0,3

1,5·10-2

1,05


При наличии в р-ре определенных активирующих анионов (Cl- , Br-, CNS- и др.) при нек-ром потенциале Eпит < Eпрпна участке GH может развиваться др. процесс нарушения П.м.-локальная активация (см. Питтинговая коррозия). В области потенциалов положительнее Eпрп растворение металла обусловлено развитием нового анодного процесса, гл. обр. окисления металла до его соед. высшей валентности, не обладающих защитными св-вами (напр., CrVI вместо CrIII). В пассивной области при быстрых изменениях потенциала наблюдаются отклонения тока i от стационарного значения. В частности, при скачкообразном повышении E ток вначале резко увеличивается, в первом приближении по ур-нию:

3526-32.jpg

где kE - предэкспоненц. множитель, зависящий от потенциала и времени, b-эмпирич. постоянная. Затем ток возвращается (с замедлением) к значению iст. При этом в кислых р-рах разность iiст расходуется частично на переход ионов металла в р-р, частично на дополнит. формирование пассивирующего слоя (в первые мгновения, вероятно, и на его депротонизацию, т. к. обычно этот слой в той или иной мере гидратирован).

Механизм оксидной П. м. Относительно природы пассиви-рующих оксидных слоев и механизма торможения ими растворения металла традиционно существуют две точки зрения. Согласно "пленочной" концепции, пассивный металл защищен от коррозии сплошной (беспористой) поверхностной пленкой фазового оксида. Действительно, в большинстве случаев на пов-сти пассивных металлов разл. методами обнаружены и изучены фазовые оксиды толщиной обычно до неск. нм. В зависимости от природы металла и условий пассивации такие пленки по строению и св-вам различаются: они бывают одно- и двухслойными, кристал-лич., аморфными, полимерного типа, полупроводниковыми n-типа, р-типа или со св-вами p-n-перехода. Во всех случаях для барьерного слоя пленки, лимитирующего транспорт реагентов, характерна небольшая нестехиометричность, в частности избыток кислорода или недостаток катионных вакансий на внешней (обращенной к электролиту) стороне слоя. Значения Eпас и Еппдля ряда металлов (Fe в щелочных р-рах, Ni, Cu и др.) весьма близки к равновесным потенциалам металл-оксидных электродов типа M + nH2O3526-33.jpgMOn + 2nH+ + 2nе. Законы утолщения оксидных пленок во времени (логарифмич., параболич. и др.) аналогичны таковым при росте оксидных слоев и окалин в процессах газовой коррозии, а электрохим. процессы на нек-рых оксидных электродах подобны таковым на пассивных металлах. "Адсорбционная" концепция исходит из представлений об энергетич. неоднородности пов-сти металла; предполагается, что П. м. может обеспечиваться долями монослоя кислорода, к-рый образуется при диссоциативной хемосорб-ции воды на металле. Хемосорбированный кислород изменяет строение двойного электрического слоя или блокирует активные центры на пов-сти, образуя прочные хим. связи с металлом (частично ковалентного типа). Пассивация долями монослоя экспериментально подтверждена для ряда систем, напр. Fe в щелочных р-рах, Pt и Ni в кислых. К тому же пассивирующие оксидные слои в нек-рых случаях настолько тонки, что их трудно считать фазовыми (Cr в к-тах). В пользу адсорбц. концепции свидетельствует тот факт, что, напр., Ni ведет себя как пассивный металл в серной к-те с добавлением ионов I- или в диметилсульфоксидных р-рах в условиях, когда на его пов-сти образуются адсорбц. слой ионов I- или молекул диметилсульфоксида (фазовые оксидные пленки отсутствуют). Кривая анодного растворения в области перехода к пассивному состоянию (участок ABCD на рис.) м. б. рассчитана на основе представлений о конкуренции анодного растворения (р-ции 2,3) и пассивирующей адсорбции кислорода (р-ции 2, 4, 5):

3526-34.jpg

Постоянная скорость растворения в пассивной области при росте E (участок DE)объясняется тем, что повышение тока из-за увеличения экспоненц. множителя в ур-нии (1) пол-ностью компенсируется уменьшением во времени предэкспоненц. множителя kE за счет дополнит. адсорбции кислорода на пассивную пов-сть.

В рамках каждой из двух концепций делаются попытки объяснить все факты и эмпирич. закономерности оксидной П. м. Так, нек-рые сторонники адсорбц. концепции признают существование на пассивной пов-сти фазового оксида, но основное защитное действие связывают с хемосорбцией кислорода на границе металл-оксид или оксид-р-р. В нек-рых вариантах пленочной концепции энергетич. неоднородность пов-сти учитывается при рассмотрении образования и роста зародышей новой фазы, в процессах нарушения П. м. По-видимому, при оксидной П. м. адсорбция и образование фазовых пленок должны рассматриваться в неразрывной связи друг с другом, причем в разл. случаях тот или иной процесс м. б. определяющим.

Практическое значение П.м. исключительно велико. Она обеспечивает необходимую коррозионную стойкость конструкций и изделий, изготовляемых из разл. сталей, алюминия, титана и др. нестойких металлов во многих прир. и технол. средах. Широко применяется самопассивация металлич. материалов, достигаемая путем легирования добавками, к-рые снижают критич. ток (напр., Ni, Mo) или и ток, и потенциал пассивации (напр., Cr в кристаллич. сплавах на основе железа, P и С в аморфных сплавах) (см. Коррозион-ностойкие материалы). T. наз. катодное легирование сводится к ускорению катодного восстановления окислителя из-за того, что на пов-сти накапливаются частицы корро-зионностойкой добавки (напр., Pd или Mo в сплавах на основе Ti), на к-рых катодный процесс происходит при меньшем перенапряжении. Такого же результата добиваются введением в среду дополнит. окислителя или повышением его концентрации. Во всех этих случаях должны выполняться условия: Eкор < Eпрп или Eкор < Eпиг.

Если самопассивация материала невозможна или нецелесообразна, для повышения коррозионной стойкости оборудования используется анодная защита, основанная на принудит. поддерживании электродного потенциала в пассивной области путем регулирования тока растворения (см. Электрахимическая защита). Нарушения П. м.- частая причина выхода оборудования из строя, аварий, преждевременных ремонтов. П. м. может затруднять нск-рые технол. процессы, напр. электрохим. размерную обработку, электроосаждение металлов с р-римыми анодами.


===
Исп. литература для статьи «ПАССИВНОСТЬ МЕТАЛЛОВ»:
Колотыркнн Я. M., в сб.: Проблемы физической химии, в. 1, M., 1958; Томашов H. Д., Теория коррозии и защиты металлов, M., 1959; Кабанов Б. H., Электрохимия металлов и адсорбция, M., 1966; Новаков-ский В. M., "Защита металлов", 1979, т. 15, 1, с. 3-19; Колотыр-кин Я. M., Металл и коррозия, M., 1985; Кеше Г., Коррозия металлов, пер. с нем., M.. 1984; Томашов H. Д., Чернова Г. П., Теория коррозии и корро-зионностойкие конструкционные сплавы, M., 1986; Попов Ю. А., "Электрохимия". 1986, т. 22, № 1, с. 90 95; № 6, с. 762 67; Сухотин A. M., Физическая химия пассивируюших пленок на железе. Л., 1989.


Страница «ПАССИВНОСТЬ МЕТАЛЛОВ» подготовлена по материалам химической энциклопедии.

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Rambler's Top100
Copyright © Newchemistry.ru 2006. All Rights Reserved