НА ГЛАВНУЮ 

КОТАКТЫ  

АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    
СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English

СЛОВАРЬ ТЕРМИНОВ

ПОИСК В РАЗДЕЛЕ    

Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

НИТРОСОЕДИНEНИЯ (С-нитросоединения), содержат в молекуле одну или неск. нитрогрупп, непосредственно связанных с атомом углерода. Известны также N- и О-нитро-соединения (см. Нитрамины и Нитраты органические).

Нитрогруппа имеет строение, промежуточное между двумя предельными резонансными структурами:

3055-48.jpg

Группа планарна; атомы N и О имеют , 2-гибридизацию, связи N—О равноценные и практически полуторные; длины связей, напр. для CH3NO2, 0,122 нм (N—О), 0,147 нм (С—N), угол ONO 127°. Система С—NO2 плоская с низким барьером вращения вокруг связи С—N.

Н., имеющие хотя бы один а-Н-атом, могут существовать в двух таутомерных формах с общим мезомерным анионом. О-форма наз. аци-H. или нитроновой к-той:

3055-49.jpg

Известны разл. производные нитроновых к-т: соли ф-лы RR'C=N(O)O- M+ (соли Н.), эфиры (нитроновые эфиры) и т.д. Эфиры нитроновых к-т существуют в виде иис- и транс-изомеров. Существуют циклич. эфиры, напр. N-оксиды изоксазолинов.

Назв. Н. производят прибавлением префикса "нитро" к назв. соединения-основы, по необходимости добавляя цифровой указатель, напр. 2-нитропропан. Назв. солей Н. производят из назв. либо С-формы, либо аци-формы, или нитроновой к-ты.

Физические свойства. Простейшие нитроалканы-бесцв. жидкости. Физ. св-ва нек-рых алифатических Н. приведены в таблице. Ароматические Н.-бесцв. или светло-желтые высококипящие жидкости или низкоплавкие твердые в-ва, обладающие характерным запахом, плохо раств. в воде, как правило, перегоняются с паром.

ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ АЛИФАТИЧЕСКИХ НИТРОСОЕДИНЕНИЙ

3055-50.jpg

* При 25°С. ** При 24°С. *** При 14°С.


В ИК спектрах Н. присутствуют две характеристич. полосы, соответствующие антисимметричным и симметричным валентным колебаниям связи N—О: для первичных Н. соотв. 1560-1548 и 1388-1376 см-1, для вторичных 1553-1547 и 1364-1356 см-1, для третичных 1544-1534 и 1354-1344см-1; для нитроолефинов RCH=CHNO2 1529-1511 и 1351-1337 см-1; для динитроалканов RCH(NO2)2 1585-1575 и 1400-1300 см-1; для тринитроалканов RC(NO2)3 1610-1590 и 1305-1295 см-1; для ароматических Н. 1550-1520 и 1350-1330 см-1 (электроноакцепторные заместители сдвигают высокочастотную полосу в область 1570 -1540, а электронодонорные - в область 1510-1490 см-1); для солей Н. 1610-1440 и 1285-1135 см-1; нитроновые эфиры имеют интенсивную полосу при 1630-1570 см, связь С—N-слабую полосу при 1100-800 см-1.

В УФ спектрах алифатические Н. lмакс 200-210 нм (интенсивная полоса) и 270-280 нм (слабая полоса); для солей и эфиров нитроновых к-т соотв. 220-230 и 310-320 нм; для гем-динитросоед. 320-380 нм; для ароматических Н. 250-300 нм (интенсивность полосы резко снижается при нарушении копланарности).

В спектре ПМР хим. сдвиги a-Н-атома в зависимости от строения 4-6 м.д. В спектре ЯМР 14N и 15N хим. сдвиг 5 от - 50 до + 20 м.д.

В масс-спектрах алифатических Н. (за исключением CH3NO2) пик мол. иона отсутствует или очень невелик; осн. процесс фрагментации - отщепление NO2 или двух атомов кислорода с образованием фрагмента, эквивалентного нитрилу. Для ароматических Н. характерно присутствие пика мол. иона; осн. пик в спектре соответствует иону, получаемому при отщеплении NO2.

Химические свойства. Нитрогруппа - одна из наиб. сильных электроноакцепторных групп и способна эффективно делокализовать отрицат. заряд. В ароматич. соед. в результате индукционного и особенно мезомерного эффектов она влияет на распределение электронной плотности: ядро приобретает частичный положит. заряд, к-рый локализован гл. обр. в орто- и пара-положениях; константы Гаммета для группы NO2 sм 0,71, sn 0,778, s+n 0,740, s-n 1,25. Т. обр., введение группы NO2 резко увеличивает реакц. способность орг. соед. по отношению к нуклеоф. реагентам и затрудняет р-ции с электроф. реагентами. Это определяет широкое применение Н. в орг. синтезе: группу NO2 вводят в нужное положение молекулы орг. соед., осуществляют разл. р-ции, связанные, как правило, с изменением углеродного скелета, и затем трансформируют в др. ф-цию или удаляют. В ароматич. ряду часто используют и более короткую схему: нитрование-трансформация группы NO2.

Мн. превращения алифатических Н. проходят с предварит. изомеризацией в нитроновые к-ты или образованием соответствующего аниона. В р-рах равновесие обычно практически полностью сдвинуто в сторону С-формы; при 20 °С доля аци-формы для нитрометана 1•10-7, для нитропропана 3.10-3. Нитроновые к-ты в своб. виде, как правило, неустойчивы; их получают осторожным подкислением солей Н. В отличие от Н. они проводят ток в р-рах и дают красное окрашивание с FeCl3. Аци-Н.-более сильные СН-кислоты (рКа ~ 3-5), чем соответствующие Н. (рКа ~ 8-10); кислотность Н. повышается с введением электроноакцепторных заместителей в a-положение к группе NO2.

Образование нитроновых к-т в ряду ароматических Н. связано с изомеризацией бензольного кольца в хиноидную форму; напр., нитробензол образует с конц. H2SO4 окрашенный солеобразный продукт ф-лы I, о-нитротолуол проявляет фотохромизм в результате внутримол. переноса протона с образованием ярко-синего О-производного:

30555-1.jpg

При действии оснований на первичные и вторичные Н. образуются соли Н.; амбидентные анионы солей в р-циях с электрофилами способны давать как О-, так и С-производ-ные. Так, при алкилировании солей Н. алкилгалогенидами, триалкилхлорсиланами или R3O+BF-4 образуются продукты О-алкилирования. Последние м.б. получены также при действии диазометана либо N,О-бис-(триметилсилил)аце-тамида на нитроалканы с рКа < 3 или нитроновые к-ты, напр.:

30555-2.jpg

Ациклич. алкиловые эфиры нитроновых к-т термически нестабильны и распадаются по внутримол. механизму:

30555-3.jpg; эту

р-цию можно использовать для получения карбонильных соединений. Более стабильны силиловые эфиры. Об образовании продуктов С-алкилирования см. ниже.

Для Н. характерны р-ции с разрывом связи С—N, по связям N=O, O=N30555-4.jpg О, C=N -> О и р-ции с сохранением группы NO2.

Р-ц и и с р а з р ы в о м с в я з и С—N. Первичные и вторичные Н. при нагр. с минер. к-тами в присут. спиртового или водного р-ра щелочи образуют карбонильные соед. (см. Нефа реакция). Р-ция проходит через промежут. образование нитроновых к-т:

30555-5.jpg

В качестве исходных соед. можно использовать силиловые нитроновые эфиры. Действие сильных к-т на алифатические Н. может приводить к гидроксамовым к-там, напр.:

30555-6.jpg

Метод используют в пром-сти для синтеза СН3СООН и гидроксиламина из нитроэтана. Ароматические Н. инертны к действию сильных к-т.

При действии восстановителей (напр., TiCl3-H2O, VCl22О-ДМФА) на Н. или окислителей (KMnO4-MgSO4, O3) на соли Н. образуются кетоны и альдегиды.

Алифатические Н., содержащие подвижный атом Н в b-положении к группе NO2, при действии оснований легко элиминируют ее в виде HNO2 с образованием олефинов. Аналогично протекает термич. разложение нитроалканов при т-рах выше 450°. Вицинальные динитросоед. при обработке амальгамой Са в гексамстаноле отщепляют обе группы NO2, Ag-соли непредельных Н. при потере групп NO2 способны димеризоваться:

30555-7.jpg

Нуклеоф. замещение группы NO2 не характерно для нитроалканов, однако при действии тиолат-ионов на третичные нитроалканы в апротонных р-рителях группа NO2 замещается на атом водорода. Р-ция протекает по анион-радикальному механизму. В алифатич. и гетероциклич. соед. группа NO2 при кратной связи относительно легко замещается на нуклеофил, напр.:

30555-8.jpg

В ароматич. соед. нуклеоф. замещение группы NO2 зависит от ее положения по отношению к др. заместителям: группа NO2, находящаяся в мета-положении по отношению к электроноакцепторным заместителям и в орто- и пара-положениях к электронодонорным, обладает низкой реакц. способностью; реакц. способность группы NO2, находящейся в орто- и пара-положениях к электроноакцепторным заместителям, заметно увеличивается. В нек-рых случаях заместитель вступает в орто-положение к уходящей группе NO2 (напр., при нагр. ароматических Н. со спиртовым р-ром KCN, р-ция Рихтера):

30555-9.jpg

Р-ц и и п о с в я з и N = O. Одна из важнейших р-ций-вос-становление, приводящее в общем случае к набору продуктов:

30555-10.jpg

Азокси-(II), азо-(III) и гидразосоед. (IV) образуются в щелочной среде в результате конденсации промежуточно возникающих нитрозосоед. с аминами и гидроксиламинами. Проведение процесса в кислой среде исключает образование этих в-в. Нитрозосоед. восстанавливаются быстрее, чем соответствующие Н., и выделить их из реакц. смеси, как правило, не удается. Алифатические Н. восстанавливаются в азокси- или азосоединения при действии алкоголятов Na, ароматические-при действии NaBH4, обработка последних LiAlH4 приводит к азосоединениям. Электрохим. восстановление ароматических Н. при определенных условиях позволяет получить любое из представленных производных (за исключением нитрозосоед.); этим же методом удобно получать гидроксиламины из мононитроалканов и амидоксимы из солей гем-динитроалканов:

30555-11.jpg

Известно много методов восстановления Н. до аминов. Широко используют железные опилки, Sn и Zn в присут. к-т; при каталитич. гидрировании в качестве катализаторов используют Ni-Ренея, Pd/C или Pd/PbCO3 и др. Алифатические Н. легко восстанавливаются до аминов LiAlH4 и NaBH4 в присут. Pd, амальгамами Na и Аl, при нагр. с гидразином над Pd/C; для ароматических Н. иногда применяют ТlСl3, СrСl2 и SnCl2, ароматич. поли-Н. избирательно восстанавливаются до нитраминов гидросульфидом Na в СН3ОН. Существуют способы избират. восстановления группы NO2 в полифункциональных Н. без затрагивания др. ф-ций.

При действии Р(III) на ароматические Н. происходит последоват. дезоксигенирование группы NO2 с образованием высокореакционноспособных нитренов. Р-цию используют для синтеза конденсир. гетероциклов, напр.:

30555-12.jpg

В этих же условиях силиловые эфиры нитроновых к-т трансформируются в силильные производные оксимов. Обработка первичных нитроалканов РСl3 в пиридине или NaBH2S приводит к нитрилам. Ароматические Н., содержащие в орто-положении заместитель с двойной связью или циклопропильный заместитель, в кислой среде перегруппировываются в о-нитрозокетоны, напр.:

30555-13.jpg

Н. и нитроновые эфиры реагируют с избытком реактива Гриньяра, давая производные гидроксиламина:

30555-14.jpg

Р-ции по связям O = N 30555-15.jpg О и C = N 30555-16.jpg О. Н. вступают в р-ции 1,3-диполярного циклоприсоединения, напр.:

30555-17.jpg

Наиб. легко эта р-ция протекает между нитроновыми эфира-ми и олефинами или ацетиленами. В продуктах циклоприсоединения (моно- и бициклич. диалкоксиаминах) под действием нуклеоф. и электроф. реагентов связи N — О легко расщепляются, что приводит к разл. алифатич. и гетеро-циклич. соед.:

30555-18.jpg

В препаративных целях в р-ции используют стабильные силиловые нитроновые эфиры.

Р-ц и и с с о х р а н е н и е м г р у п п ы NO2. Алифатические Н., содержащие a-Н-атом, легко алкилируются и ацилируются с образованием, как правило, О-производных. Однако взаи-мод. дилитиевых солей первичных Н. с алкилгалогенидами, ангидридами или галогенангидридами карбоновых к-т приводит к продуктам С-алкилирования или С-ацилирования, напр.:

30555-19.jpg

Известны примеры внутримол. С-алкилирования, напр.:

30555-20.jpg

Первичные и вторичные Н. реагируют с алифатич. аминами и СН2О с образованием р-аминопроизводных (р-ция Манниха); в р-ции можно использовать предварительно полученные метилольные производные Н. или аминосоед.:

30555-21.jpg

Нитрометан и нитроэтан могут конденсироваться с двумя молекулами метилоламина, а высшие нитроалканы- только с одной. При определенных соотношениях реагентов р-ция может приводить к гетероциклич. соед., напр.: при взаимод. первичного нитроалкана с двумя эквивалентами первичного амина и избытком формальдегида образуются соед. ф-лы V, если реагенты берут в соотношении 1:1:3-соед. ф-лы VI.

30555-22.jpg

Ароматические Н. легко вступают в р-ции нуклеоф. замещения и значительно труднее-в р-ции электроф. замещения; при этом нуклеофил на правляется в орто- и пора-поло жения, а электрофил-в мета-положение к группе NO2. Константа скорости электроф. нитрования нитробензола на 5-7 порядков меньше, чем бензола; при этом образуется м-динитробензол.

Активирующее влияние группы NO2 на нуклеоф. замещение (особенно по орто-положению) широко используют в орг. синтезе и пром-сти. Р-ция протекает по схеме присоединение-отщепление с промежут. образованием s-комплек-са (комплекс Майзенхаймера). По этой схеме атомы галогенов легко замещаются на нуклеофилы:

30555-23.jpg

Известны примеры замещения по анион-радикальному механизму с захватом электрона ароматич. соединением и выбросом галогенид-иона или др. групп, напр. алкокси, амино, сульфатной, NO-2. В последнем случае р-ция проходит тем легче, чем больше отклонение группы NO2 от копланарности, напр.: в 2,3-динитротолуоле замещается в осн. группа NO2 в положении 2. Атом Н в ароматических Н. также способен к нуклеоф. замещению-нитробензол при нагр. с NaOH образует o-нитрофенол.

Нитрогруппа облегчает перегруппировки ароматич. соед. по механизму внутримол. нуклеоф. замещения или через стадию образования карбанионов (см. Смайлса перегруп-пировка).

Введение второй группы NO2 ускоряет нуклеоф. замещение. Н. в присут. оснований присоединяются к альдегидам и кетонам, давая нитроспирты (см. Анри реакции), первичные и вторичные Н.-к соед., содержащим активир. двойную связь (р-ция Михаэля), напр.:

30555-24.jpg

Первичные Н. могут вступать в р-цию Михаэля со второй молекулой непредельного соед.; эту р-цию с послед. трансформацией группы NO 2 используют для синтеза поли-функцион. алифатич. соединений. Комбинация р-ций Анри и Михаэля приводит к 1,3-динитросоединениям, напр.:

30555-25.jpg

К неактивир. двойной связи присоединяются лишь Hg-производные гем-ди- или тринитросоединений, а также IC(NO2)3 и C(NO2)4, при этом образуются продукты С- или О-алкилирования; последние могут вступать в р-цию цикло-присоединения со второй молекулой олефина:

30555-26.jpg

Легко вступают в р-ции присоединения нитроолефины: с водой в слабокислой или слабощелочной среде с послед. ретрореакцией Анри они образуют карбонильные соед. и нитроалканы; с Н., содержащими a-Н-атом,-поли-Н.; присоединяют и др. СН-кислоты, такие, как ацетилацетон, эфиры ацетоуксусной и малоновой к-т, реактивы Гриньяра, а также нуклеофилы типа OR-, NR-2 и др., напр.:

30555-27.jpg

Нитроолефины могут выступать в роли диенофилов или диполярофилов в р-циях диенового синтеза и циклоприсое-динения, а 1,4-динитродиены-в роли диеновых компонентов, напр.:

30555-28.jpg

Нитрозирование первичных Н. приводит к нитроловым к-там RC(=NOH)NO2, вторичные Н. образуют псевдо-нитролы RR'C(NO)NO2, третичные Н. в р-цию не вступают.

Нитроалканы легко галогенируются в присут. оснований с последоваг. замещением атомов Н при a-С-атоме:

30555-29.jpg

При фотдхйм. хлорировании замещаются более удаленные атомы Н:

30555-30.jpg

При карбоксилировании первичных нитроалканов действием CH3OMgOCOOCH3 образуются a-нитрокарбоновые к-ты или их эфиры.

При обработке солей моно-Н. C(NO2)4., нитритами Ag или щелочных металлов либо при действии нитритов на a-гало-геннитроалканы в щелочной среде (р-ция Тер Меера) образуются гем-динитросоединения. Электролиз a-галоген-нитроалканов в апротонных р-рителях, а также обработка Н. Сl2 в щелочной среде или электроокисление солей Н. приводят к виц-динитросоединениям:


30555-31.jpg

Нитрогруппа не оказывает существ. влияния на свободно-радикальное алкилирование или арилирование ароматич. соед.; р-ция приводит в осн. к орто- и пара-замещенным продуктам.

Для восстановления Н. без затрагивания группы NO2 применяют NaBH4, LiAlH4 при низких т-рах или р-р дибора-на в ТГФ, напр.:

30555-32.jpg

Ароматич. ди- и три-Н., в частности 1,3,5-тринитробен-зол, образуют устойчивые ярко окрашенные кристаллич. мол. комплексы с ароматич. соед.-донорами электронов (аминами, фенолами и др.). Комплексы с пикриновой к-той используют для выделения и очистки ароматич. углеводородов. Взаимод. ди- и тринитробензолов с сильными основаниями (НО-, RO-, N-3, RSO-2, CN-, алифатич. аминами) приводит к образованию комплексов Майзен-хаймера, к-рые выделяют в виде окрашенных солей щелочных металлов.

Получение. В пром-сти низшие нитроалканы получают жидкофазным (р-ция Коновалова) или парофазным (метод Хэсса) нитрованием смеси этана, пропана и бутана, выделяемых из природного газа или полученных переработкой нефти (см. Нитрование). Таким методом получают и высшие Н., напр. нитроциклогексан - полупродукт в произ-ве капролактама.

В лаборатории для получения нитроалканов применяют нитрование азотной к-той соед. с активир. метиленовой группой; удобный метод синтеза первичных нитроалканов -нитрование 1,3-индандиона с послед. щелочным гидролизом a-нитрокетона:

30555-33.jpg

Алифатические Н. получают также взаимод. AgNO2 с алкилгалогенидами или NaNO2 с эфирами a-галогенкарбо-новых к-т (см. Мейера реакция). Алифатические Н. образуются при окислении аминов и оксимов; окисление оксимов -способ получения гем-ди- и гем-тринитросоединений, напр.:

30555-34.jpg

Нитроалканы м.б. получены нагреванием ацилнитратов до 200 °С.

Мн. методы синтеза Н. базируются на нитровании олефи-нов оксидами азота, HNO3, солями нитрония, NO2Cl, орг. нитратами и т.п. Как правило, при этом получают смесь виц-динитросоединений, нитронитратов, нитронитритов, непредельных Н., а также продуктов сопряженного присоединения группы NO 2 и молекулы р-рителя или продуктов их гидролиза, напр.:

30555-35.jpg

a,w-Динитроалканы получают действием алкилнитратов на циклич. кетоны с послед. гидролизом солей a,a'-динитро-кетонов:

30555-36.jpg

Поли-Н. синтезируют деструктивным нитрованием разл. орг. соед.; напр., три- и тетранитрометан получают при действии HNO3 на ацетилен в присут. ионов Hg(II).

Осн. метод получения ароматических Н.-электроф. нитрование. Активная нитрующая группа-ион нитрония NO2, генерируемый из HNO3 при действии сильных протонных или апротонных к-т. Для нитрования в мягких условиях используют соли нитрония (NO2BF4, NO2ClO4 и т.п.), а также N2O5 в инертных р-рителях.

В пром-сти для нитрования ароматич. соед. используют, как правило, нитрующие смеси (H2SO4 + HNO3). В лаборатории для повышения концентрации иона нитрония вместо H2SO4 применяют АlСl3, SiCl4, BF3 и т.п., часто нитрование проводят в инертных р-рителях (СН3СООН, сульфолан, нитрометан и т.п.). Легко заменяются на группу NO2 сульфо- и диазогруппы. Для введения в нитробензол второй группы NO 2 в орто- и пара-положения вначале получают соответствующее диазопроизводное, а затем замещают диазогруппу по р-ции Зандмейера. Ароматические Н. получают также окислением нитрозо-, диазо- и аминогрупп.

Применение. Поли-Н., особенно ароматические, применяют в качестве взрывчатых веществ и в меньшей степени как компоненты ракетных топлив. Алифатические Н. используют как р-рители в лакокрасочной пром-сти и в произ-ве полимеров, в частности эфиров целлюлозы; для очистки минер. масел; депарафинизации нефти и др.

Ряд Н. находят применение в качестве биологически активных в-в. Так, эфиры фосфорной к-ты, содержащие нитроарильный фрагмент,-инсектициды; производные 2-нитро-1,3-пропандиола и 2-нитростирола - фунгициды; производные 2,4-динитрофенола - гербициды; a-нитрофураны -важнейшие антибактериальные препараты, на их основе созданы лекарства, обладающие широким спектром действия (фуразолидин и др.). Нек-рые ароматические Н.-душистые в-ва.

Н.- полупродукты в произ-ве синтетич. красителей, полимеров, моющих препаратов и ингибиторов коррозии; смачивающих, эмульгирующих, диспергирующих и флотац. агентов; пластификаторов и модификаторов полимеров, пигментов и пр. Они находят широкое применение в орг. синтезе и в качестве модельных соед. в теоретич. орг. химии.


Нитропарафины обладают сильным местным раздражающим действием и являются относительно токсичными в-вами. Относятся к клеточным ядам общего действия, особенно опасны для печени. ЛД50 0,25-1,0 г/кг (при пер-оральном введении). Хлорированные и непредельные Н. в 5-10 раз токсичнее. Ароматические Н. угнетают нервную и особенно кровеносную систему, нарушая снабжение организма кислородом. Признаки отравления - гиперемия, по-выш. выделение слизи, слезотечение, кашель, головокружение, головная боль. Ср-ва первой помощи-хинин и кислород. Метаболизм Н. связан с окислит.-восстановит. р-циями и, в частности, с окислит. фосфорилированием. Напр., 2,4-динитрофенол - один из наиб. мощных реагентов, разобщающих процессы окисления и фосфорилирования, что препятствует образованию АТФ в клетке.

В мире производится несколько сотен различных Н. Объем произ-ва важнейших алифатических Н.-десятки тыс. т, ароматических-сотни тыс. т; напр., в США производится 50 тыс. т/год нитроалканов С13 и 250 тыс. т/год нитробензола.

См. также м-Динитробензол, Нитроанизолы, Нитробензол, Нитрометап, Нитротолуолы и др.


===
Исп. литература для статьи «НИТРОСОЕДИНEНИЯ»:
Химия нитро- и нитрозогрупп, под ред. Г. Фойера, пер. с англ., т. 1-2, М., 1972-73; Химия алифатических и алициклических нитросоединений, М., 1974; Общая органическая химия, пер. с англ., т. 3, М., 1982, с. 399-439; Тартаковский В. А., "Изв. АН СССР. Сер. хим.", 1984, № 1, с. 165-73.

В. А. Тартаковский.

Страница «НИТРОСОЕДИНEНИЯ» подготовлена по материалам химической энциклопедии.

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Rambler's Top100
Copyright © Newchemistry.ru 2006. All Rights Reserved