НА ГЛАВНУЮ 

КОТАКТЫ  

АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    
СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English

СЛОВАРЬ ТЕРМИНОВ

ПОИСК В РАЗДЕЛЕ    

Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

КОМБИНАЦИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ (рамановская спектроскопия), раздел оптич. спектроскопии, изучающий взаимод. монохроматич. излучения с в-вом, сопровождающееся изменением энергии рассеянного излучения по сравнению с энергией падающего на объект (возбуждающего) излучения. Комбинац. рассеяние (КР) обусловлено неупругими столкновениями фотонов с молекулами (или ионами), в ходе к-рых они обмениваются энергией. По изменению энергии фотона можно судить об изменении энергии молекулы, т.е. о переходе ее на новый энергетич. уровень. Схематически эти переходы показаны на рис. 1. Молекула, находящаяся в невозбужденном состоянии с энергией Е0, под действием кванта с энергией hv0 (h-постоянная Планка, v0-частота падающего кванта) возбуждается в промежуточное (виртуальное) состояние с энергией Eвиpт, откуда может либо вернуться в исходное состояние, испустив квант hv0 (рэлеевское рассеяние), либо перейти в состояние Еi, испустив квант h(v0vi), что приводит к появлению в спектре рассеянного излучения линий с частотами v0—vi (стоксовы линии). Если до поглощения фотона молекула находилась в возбужденном состоянии с энергией Ei, то после рассеяния света она может перейти как в исходное, так и в основное состояние E0, тогда энергия
421_440-34.jpg
Рис. 1. Схема энергетических уровней, иллюстрирующая основные принципы КР. Энергия возбуждающего света hv0, линии КР имеют частоты v0bvi.

рассеянного света возрастает, составляя h(v0+vi), что приводит к появлению в спектре линий с частотами v0+vi (антистоксовы линии). Энергетич. состояние в-ва характеризует разность энергий возбуждающего и рассеянного света Ei+hvi, т. е, важнейшей характеристикой спектров КР являются не сами частоты, а их сдвиг относительно частоты рэлеевской линии. Стоксовы и антистоксовы линии располагаются симметрично относительно рэлеевской линии и образуют спектр КР; при этом сдвиги частот vi имеют значения 10-4000 см-1 и совпадают с частотами молекул, наблюдаемыми в ИК спектрах поглощения. Спектр КР, как правило, представляет собой колебат. спектр. В области малых значений vi могут проявляться переходы между вращат. уровнями (вращат. спектры КР), реже электронные переходы (электронные спектры КР). Т. обр., частоты рассеянного света являются комбинациями частоты возбуждающего света и колебат. и вращат. частот молекул. При обычной т-ре стоксовы линии значительно интенсивнее антистоксовых, поскольку б.ч. молекул находится в невозбужденном состоянии; при повышении т-ры интенсивность антистоксовых линий растет из-за частичного теплового заселения возбужденных колебат. состояний Ei. Интенсивность стоксовых линий КР пропорциональна (vo-vi)4 при vo<<vэл (vэл - частота электронного перехода), а при v0:vэл резко возрастает (резонансное КР). Для каждой конкретной линии КР интенсивность - ф-ция поляризуемости молекул (a), в отличие от ИК поглощения, где интенсивность - ф-ция дипольного момента молекулы (m). Значение наведенного дипольного момента определяется выражением
421_440-35.jpg
где Е - напряженность электрич. поля световой волны, a, b, g поляризуемость I, II, III порядка. В случае обычного КР вторым и остальными членами разложения можно пренебречь, однако при больших интенсивностях возбуждающего света они имеют важное значение. Различия в физ. природе процессов рассеяния и поглощения света характеризуют разные правила отбора, т. е. одни и те же колебания проявляются либо в ИК, либо в КР спектрах или имеют разную интенсивность, напр., для молекул, обладающих центром симметрии, активные в спектре КР колебания не проявляются в ИК спектре и наоборот (правило альтернативного запрета); колебат. и вращат. частоты простых бездипольных молекул (Н2, О2, N2 и др.), активные в спектрах КР, в ИК спектрах отсутствуют. Таким образом спектры ИК и КР дополняют друг друга. При КР происходит изменение поляризации света, характеризуемое степенью деполяризации r. При использовании для возбуждения лазера (рис. 2), излучение к-рого поляризовано в плоскости ху, r=Iz/Ix, где Iz и Ix - интенсивности компонент рассеянного света, поляризованных в направлении осей z и х соответственно. Для неполносимметричных колебаний (хаотически ориентир, молекул в газе или жидкой фазе) r=0,75 (деполяризов. линии в спектре); для
421_440-36.jpg
Рис. 2. Наблюдение спектра КР под углом 90° при возбуждении поляризованным светом.

полносимметричных колебаний 0[r[0,75 (поляризов. линии), что позволяет использовать величину r для установления симметрии молекул. При возбуждении неполяризов. светом для неполносимметричных колебаний r=0,86. . К. р. с. применяется для изучения орг. и неорг. в-в в любых агрегатных состояниях, за исключением черных и глубоко окрашенных образцов и соед., обладающих сильной флуоресценцией в видимой области спектра. По сравнению с И К спектрами имеет преимущества при исследовании водных р-ров, тонких волокон, микрообъектов, при изучении низкочастотных колебаний. К. р. с. используют для идентификации в-в, определения отдельных хим. связей и групп в молекулах, для исследования внутри- и межмол. взаимодействий, разл. видов изомерии, фазовых переходов, водородных связей, адсорбир. молекул и катализаторов, для обнаружения микропримесей в-в, загрязняющих окружающую среду. Использование лазеров значительно расширило границы применения К. р. с. и привело к развитию ряда новых методов в спектроскопии КР. Возможность изменения длины волны возбуждения путем замены лазеров или с помощью лазера с перестраиваемой частотой привела к развитию резонансного КР, к-рое возникает, когда частота возбуждающего света попадает в область поглощения в-ва. Этот метод позволяет определять низкие концентрации в-в, что особенно важно для биологии и биохимии. При возбуждении КР лазерами большой мощности наблюдаются новые эффекты, обусловленные нелинейными членами в разложении (1). Гипер - КР связан с гиперполяризуемостью b, наблюдается в области частот 2(vobvi) и позволяет измерять частоты колебаний, запрещенных и в КР, и в ИК спектрах; кроме того, в гипер - КР проявляются все ИК активные колебания, к-рые м. б. легко идентифицированы, т.к. они поляризованы. Когерентное антистоксово рассеяние света (КАРС) связано с третьим членом в разложении (1), содержащим поляризуемость третьего порядка g. При одновременном облучении образца двумя лазерами с частотами v1 и v2, направленными под небольшим углом, и если разность v1-v2=vi совпадает с одной из внутримол. частот, на частоте 2(v1-v2) возникает направленное лазероподобное излучение, интенсивность к-рого значительно выше интенсивности обычного КР. Плавно меняя частоту v2, можно получить весь спектр КАРС. Этот метод м. 6. использован для анализа в-в при высокой т-ре. Под действием мощных лазеров может возникнуть также вынужденное КР, при к-ром рассеянные фотоны стимулируют (вынуждают) дальнейший процесс рассеяния. Интенсивность отдельных линий при этом резко возрастает и делается сравнимой с интенсивностью возбуждающего света. При одновременном облучении образца интенсивным лазерным пучком с частотой v0 и непрерывным белым излучением с частотами в интервале от v0 до v0+4000 см-1 возникает спектр инверсного КР. При этом в спектрах поглощения наблюдаются частоты активные в КР. Новые возможности для исследования структуры оптически активных молекул в области колебат. переходов открывает спектр кругового дихроизма КР, представляющий собой разность спектров, полученных при возбуждении КР излучением, поляризованным по кругу вправо и влево. Обнаружение резкого усиления (до 106 раз) интенсивности КР молекул на пов-сти нек-рых металлов (Ag, Au, Сu), т. наз. гигантское КР, позволяет исследовать процессы адсорбции и гетерог. катализа. В настоящее время выпускают спектрометры, к-рые регистрируют спектры КР бесцв. и окрашенных образцов в кол-вах до 10-4 г (или мл). Разработаны скоростные спектрометры с использованием импульсных лазеров, регистрирующие спектр КР за 10-9 с, а также приборы, к-рые сочетают лазер с микроскопом и позволяют получать спектры КР от объектов размером порядка 1 мкм. КР открыт в 1928 Л. И. Мандельштамом и Г. С. Ландсбергом (СССР) для кристаллов и независимо от них Ч. В. Раманом и К. С. Кришнаном (Индия) для жидкостей.
===
Исп. литература для статьи «КОМБИНАЦИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ»:
Грассели Дж., Снейвили М., Балкин Б., Применение спектроскопии КР в химии, пер. с англ.. М., 1984; Кэри П., Применение спектроскопии КР и РКР в биохимии, пер. с англ.. М.. 1985. Б. В. Локшин.

Страница «КОМБИНАЦИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ» подготовлена по материалам химической энциклопедии.

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Rambler's Top100
Copyright © Newchemistry.ru 2006. All Rights Reserved