новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

НЕТКАНЫЕ МАТЕРИАЛЫ

1 Мир нетканых материалов
2

Здравствуйте! Здесь собраны материалы "о продукции будущего, занимающей достойное место во многих секторах мировой цивилизации". Именно так назвал нетканые материалы Заслуженный деятель науки и техники РФ Э.М. Айзенштейн. Активный интерес, который сегодня проявляет российский рынок к НМ,  может быть одним из "симтомов роста" экономики страны, ее промышленного и социального потенциала...

Список сообщений |

25.05.2010

ФОТОИННОВАЦИИ: ткань вместо объектива


Американские разработчики фототехники представили ткань, которая является  сенсорной системой, воспринимающей изображение окружающих вещей.


Прообраз совершенно фантастической вещицы построили недавно Йоэль Финк и члены его исследовательской группы фотонных волокон и устройств (Photonic Bandgap Fibers and Devices Group) Массачусетского технологического института. Они продемонстрировали на опыте, что плоский кусок ткани площадью 0,1 квадратных метра способен без всяких оптических приспособлений увидеть демонстрируемый ему предмет (изображение смайлика) и передать эту информацию на компьютер.

Разумеется, секрет новинки — в необычных волокнах ткани, способных воспринимать свет и генерировать электрический сигнал. Но если бы учёные просто создали светочувствительные нити, из них получилась бы гибкая солнечная батарея, а никак не гибкая камера без линз. А значит, устройство волокон не такое уж и простое.

Вот как их получали. Сначала исследователи создавали заготовку — прозрачный полимерный цилиндр диаметром 25 миллиметров. Цилиндр этот обладал слоёной структурой.


Каждое волокно ткани на срезе – как слоёный пирог, в котором на площади в доли миллиметра соседствуют полимеры, полупроводники и металлы (фото Yoel Fink, Fabien Sorin/Photonic Bandgap Fibers and Devices Group/MIT).

Внутри него скрывались два концентрических кольца из фоточувствительных материалов (это были очень тонкие слои из полупроводникового стекла), разделённых изолятором. Кольца эти, в свою очередь, были дополнены металлическими проводниками, лежащими вдоль оси цилиндра.

Одна из изюминок лаборатории Финка – пятиметровая башня, предназначенная для вытягивания волокон. Она оснащена кучей вспомогательного оборудования, в том числе – системой обратной связи на основе лазерных измерителей, позволяющих с высокой точностью контролировать толщину волокна в автоматическом режиме (фото Photonic Bandgap Fibers and Devices Group/MIT).

Проводков таких было заложено по четыре на каждый слой, а всего — восемь. Между ними соответственно образовывались восемь датчиков света, вытянутых вдоль цилиндра и равномерно размещённых по его окружности.

Затем заготовку нагревали и медленно, очень аккуратно вытягивали до тех пор, пока диаметр цилиндра не уменьшался до нескольких сотен микрометров (меньше миллиметра). Так получалось длинное волокно, из которого экспериментаторы и сплели кусочек своей чудо-ткани.

Данный процесс вытягивания схож с тем, что применяют при создании обычных оптических волокон, но здесь необходимо было следить, чтобы в процессе растяжения сохранялось правильно положение фоточувствительных участков и сигнальных проводников.

А это было непросто: отдельные элементы финальной системы уменьшались до размеров в 100 нанометров. К тому же учёным требовалось подобрать и для фотослоёв, и для проводников, и для прозрачного изолятора материалы, в достаточной мере размягчающиеся при одной и той же температуре, дабы при растяжении заготовки не нарушалась целостность конструкции.

Поскольку оптические свойства полимера и толщина всех слоёв такой нити были точно известны, ток с внутренних светочувствительных "лент" позволил учёным определять энергию пойманных фотонов, а разница в уровне сигнала с внешних проводников, расположенных по окружности, говорила о направлении упавшего на ткань луча.

Ещё одно волокно при большем увеличении. Как видно, схема размещения восьми сигнальных проводников варьировалась (кадр с электронного микроскопа) (фото Yoel Fink, Fabien Sorin/Photonic Bandgap Fibers and Devices Group/MIT).

Но одно такое волокно ещё не могло работать камерой. Главный автор этого устройства, участник группы Финка Фабьен Сорен (Fabien Sorin), создал из 72 отрезков таких волокон сетку 36 х 36. Так и получилась собственно ткань-камера.

Сотни проводков (протянутых от конца каждого волокна) были присоединены к усилителю и далее — к компьютеру, получившему оригинальную программу расшифровки сигналов, выдаваемых тканью.

Для съёмки смайлика учёные использовали два раздельных источника монохромного света. Свет с определённой длиной волны порождал в ткани специфическую картину пространственного распределения электрических сигналов. А поскольку волокна образовывали решётку, программа могла по данным двух таких монохромных "кадров" реконструировать чёрно-белое изображение предмета, облик которого был запечатлён тканью.



1 | 2

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

ТЕМАТИЧЕСКИЕ РАЗДЕЛЫ

ПИЩЕВАЯ ХИМИЯ

Рецепты и ингредиенты

ЛАКОКРАСКА

Технологии и инновации ЛКП

ФАРМАХИМИЯ

Технологии, инновации, рынок

Полимерные трубы

Борьба за коммуникации

Смазочные материалы

МАСЛОблог

АГРОХИМИЯ

Компании, технологии, рынок

ТЕХНОЛОГИИ АЗОТНОЙ ПРОМЫШЛЕННОСТИ

Процессы и прогресс

ЭНЕРГОСБЕРЕЖЕНИЕ

Технологии, инновации, опыт

ТЕПЛОИЗОЛЯЦИЯ

Материалы и технологии

СТРОЙХИМИЯ

Композиционные материалы, добавки

Полимерная революция

Прорывные технологии пластиндустрии

НАНОТЕХНОЛОГИИ

Под знаком НАНО

МЕБЕЛЬНАЯ ХИМИЯ

Смолы, покрытия, адгезивы

РОЗА ВЕТРОВ

Транспорт и логистика химических грузов

ТАРА и УПАКОВКА

Решения для промышленных грузов

БИОГАЗ В РОССИИ

Биогазовые технологии

КАБЕЛЬПРОМ

Материалы и инновации для кабельной индустрии

ШЛАКИ

Расширяя сырьевую базу

IT в ХИМПРОМЕ

Автоматизация и телекоммуникации

Химия для красоты

Прогресс и технологии

Все номера
Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved